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INTRODUCTION

The Pristidae, a small family (5 species) of
batoids, is considered the most imperiled of all
shark and ray families (Dulvy et al. 2014), and saw-
fishes are perhaps the most endangered marine
fishes in the world (Wueringer et al. 2009, Dulvy et
al. 2016). The smalltooth sawfish Pristis pectinata

(Latham 1794) occurs in tropical and subtropical
waters within the Atlantic basin (Faria et al. 2013).
Pristis pectinata are born at a stretch total length
(STL) of approximately 70 cm, and reach maturity
at around 340 cm for males and 380 cm STL for
females, although this species is thought to grow to
over 520 cm STL (Poulakis et al. 2011, R. D. Grubbs
& J. Gelsleichter unpubl. data).
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ABSTRACT: Similar to other elasmobranchs, the smalltooth sawfish Pristis pectinata is slow grow-
ing, matures late in life, and produces relatively few young, all factors that have contributed to its
sensitivity to dramatic population declines from overfishing and habitat loss. Currently, the phys-
iological stress response of these fish to capture or to other physiological challenges such as habi-
tat loss, climatic changes, or pollution is unknown. In the absence of these data, conservation
plans may be less effective, making populations susceptible to further declines. We examined
basic stress physiology over ontogeny and as a function of capture using different fishing gears.
We also examined stress parameters to test whether degraded habitat and water quality from
altered habitats may have resulted in chronic stress in juveniles. Results suggested that the stress
response to capture by all methods was low, particularly for blood lactate, compared to other elas-
mobranchs examined to date. Metabolic stress was found to change over ontogeny, with young of
the year (YOY) eliciting the highest responses. Glucose, pCO2, bicarbonate, potassium, and hema-
tocrit indicated that gillnet capture induced greater stress responses than longline capture. Signif-
icantly higher metabolic stress was observed in YOY and juveniles captured in the 2 nurseries
most influenced by anthropogenic activities, the Peace and Caloosahatchee rivers, than in the 2
relatively pristine nurseries in Everglades National Park. Overall, the low physiological stress
responses to all capture methods investigated in this study suggest that this species is resilient,
which should promote optimism for recovery of the population.
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Young of the year (YOY) and smaller juvenile P.
pectinata inhabit shallow estuaries and coastal bays
for the first few years of life until reaching around
220 cm STL (Seitz & Poulakis 2002, Poulakis & Seitz
2004, Simpfendorfer et al. 2008, 2010). Adults occupy
habitats ranging from shallow coastal estuaries to
depths of approximately 100 m on the continental
shelf (Seitz & Poulakis 2002, Poulakis & Seitz 2004,
Carlson et al. 2014, Waters et al. 2014). The historic
range of P. pectinata in the United States was from
Texas to New York (Poulakis & Seitz 2004), though
the core of the range is southwest Florida. The
overall range was reduced dramatically in the last
half of the 20th century, and by 2000, reports of
 sightings outside southwest Florida were uncommon
(Seitz & Poulakis 2002, Poulakis & Seitz 2004, Wiley
& Simpfendorfer 2010, Waters et al. 2014). Two major
nursery regions exist in Florida and were federally
designated as Critical Habitat for juveniles: the Char-
lotte Harbor Estuary Unit and the Ten Thousand Is-
lands National Wildlife Refuge Everglades National
Park (TTI/ENP) Unit (Norton et al. 2012). The Char-
lotte Harbor Estuary Unit is a highly anthropogeni-
cally influenced nursery, whereas the TTI/ENP Unit
is relatively pristine. In the Charlotte Harbor Estuary
Unit, the Caloosahatchee River has been highly al-
tered by the creation of extensive canal systems, and
its freshwater flow is regulated through a lock system
(Barnes 2005). In contrast, the Peace River is less de-
veloped with more natural shorelines, and has un -
altered freshwater flow (Poulakis et al. 2011). Within
the TTI/ENP Unit, Goodland, Chokoloskee, and
Everglades City have some anthropogenic develop-
ment, and lower Everglades National Park has
almost no development (Hollensead et al. 2016).

In the United States, P. pectinata experienced pop-
ulation declines because of bycatch in gillnet and
trawl fisheries, direct harvest for the rostra, and habi-
tat loss. Overfishing and habitat loss are believed to
be responsible for up to a 95% decline in the P. pecti-
nata population in the United States over the 20th
century (Simpfendorfer 2000, Norton et al. 2012).
Pristis pectinata were commonly captured in net fish-
eries in the 19th and 20th centuries, because their
toothed rostra easily became entangled in fishing
gear (Seitz & Poulakis 2006). If the fish were still alive
when captured, they were likely killed because they
were a nuisance species and because their rostrum
could be sold in the curio trade (Simpfendorfer 2000,
2005, Wiley & Simpfendorfer 2007, 2010). Because
bycatch was not well recorded in fishery statistics,
population declines went unnoticed for many years
(Seitz & Poulakis 2006). Population declines were

also likely a result of habitat loss to urban develop-
ment of mangrove shorelines and adjacent seagrass
habitats that P. pectinata relied upon (Simpfendorfer
2000, Seitz & Poulakis 2002, Poulakis & Seitz 2004,
Simpfendorfer 2005, Seitz & Poulakis 2006, Wiley &
Simpfendorfer 2010). Pristis pectinata are now listed
by the IUCN as Critically Endangered, endangered
under the US Endangered Species Act (ESA), and
under CITES Appendix I, which bans international
trade (NMFS 2003, 2009, Carlson et al. 2013).

Despite being listed as endangered, P. pectinata
are still negatively affected by anthropogenic influ-
ences. For example, P. pectinata are often encoun-
tered by recreational rod and reel fishers that target
other species (Poulakis & Seitz 2004), and in bottom
longline fisheries that target sharks (Enzenauer et al.
2016). While gillnet fisheries were eliminated in
Florida waters in 1994 (FWC 1999, NMFS 2003),
there has been one incident of a P. pectinata cap-
tured in shark gillnets in federal waters (Carlson &
Baremore 2003), and as the population of P. pectinata
begins to recover, there will likely be more interac-
tions with this fishery. Furthermore, P. pectinata are
still captured as bycatch in the shrimp trawl fishery,
which is likely the largest source of direct fishing
mortality (Simpfendorfer 2000, NMFS 2009, Carlson
& Scott-Denton 2011). In addition to continued fish-
eries interactions, P. pectinata are also entangled in
marine debris (Seitz & Poulakis 2006), and mortalities
and purposeful injuries, such as rostrum removal, still
occur in the United States (Seitz & Poulakis 2006).
Additionally, habitat loss within ESA-designated crit-
ical habitat, particularly in the Charlotte Harbor
Estuary Unit, continues.

Anthropogenic stressors such as habitat degrada-
tion and fisheries interactions can cause acute and
chronic stress, which may surpass stress that occurs
from natural stressors such as seasonal changes in
the environment, capturing prey, and avoiding pred-
ators (Skomal & Bernal 2010). Physiological stress
responses are of interest because the physiology of
an animal can determine its life history, behavior,
and fitness (Ricklefs & Wikelski 2002, Wikelski &
Cooke 2006). Much of the stress physiology research
that has been conducted on teleosts has focused on
the primary stress hormone, cortisol, which is readily
quantifiable in teleosts; however, the primary stress
hormone in elasmobranchs, 1α-hydroxycorticos-
terone, has yet to be validated (Anderson 2012). In
fishes, including elasmobranchs, stressors are known
to cause a series of other quantifiable physiological
changes to the blood chemistry (Skomal & Bernal
2010). Blood-gases, acid-base status, and blood lac-
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tate are most often used in studies of stress physiol-
ogy to determine the condition of the fish following a
stressor such as capture (Cliff & Thurman 1984, Wells
et al. 1986, Harrenstien et al. 2005, Skomal 2007).
These parameters can also be indicators of present or
imminent mortality (Hoffmayer & Parsons 2001,
Young et al. 2006, Arlinghaus et al. 2009). Further-
more, in teleosts, the stress response is known to
change over ontogeny (Skomal & Mandelman 2012);
however, variation in the stress response over
ontogeny has only been investigated in a few species
of elasmobranchs, and not over their entire size
ranges (Mandelman & Skomal 2009).

The stress physiology parameters that are typically
examined in elasmobranchs include glucose, partial
pressure of CO2 (pCO2), lactate, bicarbonate, hemat-
ocrit, pH, and potassium. Blood glucose is measured
as a proxy of the glucocorticoid stress response (Cliff
& Thurman 1984, Hoffmayer & Parsons 2001, Skomal
2006, Frick et al. 2010a), during which gluconeogen-
esis occurs and stored hepatic glycogen is mobilized
into the blood to serve muscle tissue (Barton & Iwama
1991, Hoffmayer & Parsons 2001). Respiratory stress
results in elevated blood concentrations of pCO2, and
occurs as a result of decreased ventilation, which
would otherwise expel excess carbon dioxide. This
often occurs for elasmobranchs that are entangled in
a gillnet and cannot properly ventilate, or for ram-
ventilating elasmobranchs that have limited mobility
when caught on a line (Manire et al. 2001, Mandel-
man & Farrington 2007). Increases in blood lactate,
termed metabolic acidosis, result from an animal
increasing its energetic demands (e.g. when evading
predators, pursuing prey, or seeking suitable habitat)
(Murdaugh et al. 1965, Rasmussen & Rasmussen
1967, Piiper & Baumgarten 1969, Piiper et al. 1972,
Martini 1974, Cliff & Thurman 1984). This causes a
switch from aerobic to anaerobic respiration in white
muscle tissue, which results in the movement of lac-
tate and H+ ions from the muscle to the blood (Black
1958, Schmidt-Nielsen 1997, Skomal 2007). Previous
work has identified bicarbonate as having the capac-
ity to potentially buffer pH alterations caused by lac-
tate (Holeton & Heisler 1983), indicated by decreas-
ing levels of bicarbonate with increasing metabolic
stress. High lactate in muscle tissue may also result in
a compensatory mechanism called hemoconcentra-
tion (Piiper et al. 1972), which is the movement of
fluid from the blood to the muscle to dilute these high
concentrations, and can be quantified by observing
increases in hematocrit. As a result of increases in
pCO2 and lactate, an overall blood acidosis can occur
(Cliff & Thurman 1984, Hoffmayer & Parsons 2001,

Spargo 2001, Lindinger et al. 2005, Robergs et al.
2004, Mandelman & Skomal 2009, Brooks et al.
2012). Elevated concentrations of potassium in the
blood have been observed in stressed elasmobranchs
(Cliff & Thurman, 1984, Wells et al. 1986, Manire et
al. 2001), and occur from intracellular acidosis and
the resulting efflux of potassium from muscle cells
(Cliff & Thurman 1984, Moyes et al. 2006). The
change in the potassium gradient can alter the
excitability of muscle cell membranes (Adams & Gal-
van 1986), which has been shown to result in myo -
cardial malfunction in spiny dogfish Squalus acan-
thias (Martini 1974), and has also been associated
with neuromuscular interference (Cliff & Thurman
1984, Frick et al. 2010a).

Stress physiology can inform researchers of intra-
specific or interspecific differences in the response
and the major factors contributing to stress (Mandel-
man & Skomal 2009, Gallagher et al. 2010). With this
knowledge, the stress response can be an indicator of
population health (Creel et al. 1997, Wasser et al.
1997). Understanding the physiological response to
stress in individual organisms can inform species-
specific management for conservation (Ferguson &
Tufts 1992, Wikelski & Cooke 2006, Young et al.
2006), but this has not been studied in any sawfish
species. Because data regarding the physiological
stress response of the critically endangered P. pecti-
nata could be useful to species recovery, we investi-
gated 3 main questions: (1) does the stress response
change over ontogeny; (2) does capture method
affect the stress response; and (3) does habitat qual-
ity affect stress physiology in YOY and juveniles?

MATERIALS AND METHODS

Smalltooth sawfish Pristis pectinata were sampled
from the 3 research surveys that currently exist for
the species in the United States, allowing us to sam-
ple the broadest geographic area possible, and the
full size range of the species. These include the
Florida State University (FSU) survey, the National
Marine Fisheries Service (NMFS) survey, and the
Florida Fish and Wildlife Conservation Commission
(FWC) survey.

FSU survey

The ongoing FSU survey targeted large juvenile
and adult P. pectinata using fishery-independent
longlines consisting of a 4.0 mm monofilament main-
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line that was anchored on each end and marked with
a surface buoy bearing the permit numbers. Each
mainline set was approximately 750 m long. A stan-
dard set included 50 gangions consisting of a stain-
less steel tuna clip with an 8/0 stainless steel swivel
attached to 2.5 m of 300 kg monofilament that was
doubled in the terminal 25 cm and attached to 16/0
non-offset circle hook. Hooks were baited with lady-
fish Elops saurus or Spanish mackerel Scombero-
morus maculatus. Depth (m), turbidity (cm), water
temperature (°C), salinity, and dissolved oxygen (mg
l−1) were recorded from the surface to the bottom for
all sets made in depths of less than 10 m, and bottom
water temperature (°C) was recorded for those
greater than 10 m deep. Soak times were 1 h to min-
imize mortality, and all lines were set during daylight
hours. The line was hauled in the order and direction
it was set and P. pectinata were sampled as they were
caught during retrieval. Areas sampled included the
Atlantic side of the Florida Keys from Key West to
Islamorada and inside ENP from Florida Bay north to
Ponce de Leon Bay.

Opportunistically, YOY and juvenile P. pectinata
were also captured during this survey using rod and
reel as well as a dip net. Hook size for rod and reel
ranged from 10/0 to 16/0 circle hooks, and were
baited with E. saurus or S. maculatus. Fight time for
all rod and reel captures was less than 1 min. The
dip-net-captured YOY P. pectinata was visually spot-
ted in the shallows at Eagle Key in Florida Bay. The
YOY swam into the large dip net, and was immedi-
ately restrained and sampled within 1 min.

NMFS survey

During NMFS surveys, gillnets were used to cap-
ture YOY and juveniles. Gillnets were 1.5 m deep
and either 30.5 or 61.0 m long with stretched mesh
sizes of either 7.6 or 10.2 cm, respectively. Nets had
continuous float and lead lines, were anchored at
each end with a 3.6 kg mushroom anchor, and
marked with large surface buoys at each end. Depth
(m), turbidity (cm), water temperature (°C), salinity,
and dissolved oxygen (mg l−1) were recorded at the
beginning of each set. All sets were made during
daylight hours. One net was fished at a time, moni-
tored continuously, soaked for 1 h, and checked for
catch every 0.5 h or immediately if any animal was
observed in the gear. Pristis pectinata were untan-
gled and sampled as soon as possible. Areas sur-
veyed were in southwest Florida from Marco Island
to Florida Bay, and were divided into 2 distinct geo-

graphic areas for analyses. Upper Everglades (UE)
was denoted as the area from Marco Island southeast
through the Ten Thousand Island National Wildlife
Refuge and northern ENP. Florida Bay and the lower
Everglades (FLBLE) was denoted as the area encom-
passing Whitewater and Coot bays, Flamingo, and
Florida Bay.

FWC survey

Pristis pectinata were captured from the Peace and
Caloosahatchee rivers using the methods described
by Poulakis et al. (2011). Briefly, P. pectinata were
captured in gillnets soaked for 1 h in areas where P.
pectinata had recently been reported by the public or
sites where they were previously caught. Depth (m),
water temperature (°C), salinity, and dissolved oxy-
gen (mg l−1) were recorded at the beginning of each
set. Nets were constantly monitored and checked
when fishes of any type were seen in them (e.g. when
splashing was observed) or every 0.5 h, whichever
came first. When water clarity was favorable, P.
pectinata were actively searched for and gillnets
were used to catch any animals seen. After being
untangled, captured P. pectinata were placed in the
net well of the vessel or in tubs filled with ambient
water and sampled as soon as possible. Dissolved
oxygen concentrations were monitored and water
changes occurred as necessary to maintain water
quality.

Sampling and sample analyses

As soon as a P. pectinata was removed from the
gear, it was restrained and a 1−5 ml blood sample
was immediately collected, in 30 s or less, by caudal
venipuncture using a 16−22 gauge needle attached
to a heparinized syringe. To assess pCO2, lactate,
bicarbonate, and pH, a small aliquot of blood was
immediately loaded into a CG4+ cartridge and then
inserted into a VetScan i-STAT 1 point of care device
(Abaxis), which has been validated for use in elasmo-
branchs (Mandelman & Farrington 2007, Mandel-
man & Skomal 2009, Gallagher et al. 2010). Glucose
was then measured using an Accu-Chek glucose
meter (Roche Diagnostics), which has been validated
for use in fishes (Cooke et al. 2008). Blood samples
were placed on ice in a cooler (4°C) for up to 12 h.

After blood sampling, all captured P. pectinata
were measured (STL) and assessed for life stage, and
sex was determined (YOY were <150 cm STL, juve-
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niles were immature animals ≥150 cm STL, adult
males had calcified claspers and were ≥340 cm STL,
and adult females were ≥380 cm STL) (Simpfendorfer
et al. 2008, R. D. Grubbs & J. Gelsleichter, unpubl.
data). Rostral teeth were counted (left and right,
independently). All animals were then externally
tagged and released.

Upon returning to land, hematocrit was measured
in duplicate by filling a capillary tube with the
homogenized blood sample, capping one end with
clay, and spinning the tube in a hematocrit centrifuge
at 15 000 × g for 5 min. Hematocrit was determined
by calculating the red blood cell percentage of the
whole blood volume. The remaining whole blood
was then centrifuged at 1800 × g for 5 min (Unico).
The separated plasma was stored at −20°C. Plasma
potassium (K+) concentrations were measured using
a Single-Channel Digital Flame Photometer (Model
02655-00, Cole-Parmer). Each sample was prepared
using a 1:100 dilution of plasma to Cole-Parmer dilu-
ent. Potassium standards (K+: 0.5, 1, 2, and 5 ppm)
were prepared with a 1000 ppm stock solution.
Potassium ions were measured by running a stan-
dard curve (in triplicate) before the samples, which
were then measured in triplicate and in groups of 5.
This process was repeated to ensure proper calibra-
tion. Measurement of each standard and sample
dilution followed protocol developed by the manu-
facturer (Cole-Parmer), wherein the standard or sam-
ple was aspirated for 20 s prior to recording the con-
centration. Between each measurement, air was
aspirated for 10 s, followed by Cole-Palmer diluent
for 20 s and air again for 10 s.

Statistical analyses

Stress physiology data for pCO2, bicarbonate, and
pH were temperature-corrected to water tempera-
ture measurements at the time of capture (Mandel-
man & Skomal 2009, Gallagher et al. 2010). Hemat-
ocrit data were arcsine transformed prior to analyses.

To investigate physiological differences over onto -
geny, one-way ANOVA or Kruskal-Wallis tests,
depending on whether data were normally distrib-
uted, were conducted between the YOY, juvenile,
and adult blood parameters: glucose, pCO2, lactate,
bicarbonate, pH, potassium, and hematocrit. For
these analyses, P. pectinata were assessed by ontoge-
netic stage only and the capture method was not
taken into account. If the results indicated a signifi-
cant difference, a Tukey post hoc test was conducted
to determine significant pairwise differences be -

tween ontogenetic stages. When a significant differ-
ence was identified between YOY and juvenile life
stages, an additional independent t-test or Welch’s
t-test, depending on whether data were normally
 distributed, was conducted only on gillnet captured
YOY and juveniles to control for any effects of cap-
ture method.

To assess differences in the physiological stress
response of P. pectinata to different methods of cap-
ture, one-way ANOVA or Kruskal-Wallis tests were
conducted on the following blood parameters be -
tween shallow longline (<5 m), deep longline (>50
m), and gillnet captured individuals, regardless of
life stage: glucose, pCO2, lactate, bicarbonate, pH,
potassium, and hematocrit. Dip net and rod and reel
data were omitted from these analyses because of
low sample size. When the results of the ANOVA
were significant, a Tukey post hoc test was con-
ducted to determine significant pairwise differences
between the different capture methods. If a signifi-
cant difference was identified between shallow and
deep longline captured P. pectinata, an additional
independent t-test or Welch’s t-test was conducted
only on data from adults captured by shallow long-
line and deep longline to control for any influence
of juveniles that were also captured by longline.
While juveniles were omitted from these analyses,
juveniles and adults captured by shallow longline
were analyzed using independent t-tests, and no
significant differences were noted for any of the
parameters.

To investigate the potential effects of habitat qual-
ity on YOY and larger juvenile stress physiology,
one-way ANOVA or Kruskal-Wallis tests were con-
ducted on glucose, pCO2, lactate, bicarbonate, pH,
and hematocrit data of gillnet captured P. pectinata
comparing FLBLE, UE, the Caloosahatchee River,
and the Peace River. If the results were significant,
a Tukey post hoc test was conducted to identify sig-
nificant pairwise differences between nurseries.
Because the sample sizes for potassium ion results
were smaller than those of the other stress parame-
ters, the more pristine nurseries, FLBLE and UE,
were pooled (FBEV), and the more anthropogeni-
cally influenced nurseries, Caloosahatchee River
and Peace River, were pooled (PC) and a t-test was
conducted. If a significant difference between YOY
and juvenile stages was identified for a particular
parameter in the previous ontogenetic analyses,
only YOY data were used for this analysis; however,
if no significant difference was noted for a particular
parameter, then YOY and juvenile data were
pooled.



Endang Species Res 36: 121–135, 2018

All statistical analyses were conducted, and figures
were made using R version 3.0.3 (R Development
Core Team 2014). All tests were considered signifi-
cant at α = 0.05.

RESULTS

In total, blood samples were collected from 83
smalltooth sawfish Pristis pectinata, 42 YOY, 13 juve-
niles, and 28 adults (Table 1). A total of 22 individuals
were captured by shallow longline (5 juveniles, 17
adults), 11 adults by deep longline, 46 by gillnet (39
YOY, 7 juveniles), 3 by rod and reel (2 YOY, 1 juve-
nile), and 1 YOY by dip net (Table 2). From the YOY
and juvenile surveys, 7 were captured in FLBLE, 11
in UE, 9 in the Caloosahatchee River, and 22 in the
Peace River (Table 3).

Ontogeny and capture method

With respect to ontogeny, no significant difference
was found in P. pectinata blood glucose concentra-
tions (ANOVA: F2,65 = 0.37, p = 0.696). Blood glucose
was significantly higher in P. pectinata captured in
gillnets than in those captured by shallow longlines,
although there were no significant differences
between those captured in gillnets and deep long-
lines, or between those captured by deep longline
and shallow longline (ANOVA: F2,60 = 6.02, p = 0.004;
Fig. 1A). However, adults captured by deep longlines
had significantly higher blood glucose than those
caught by shallow longlines (t-test: t = 3.78, df = 12,
p = 0.003). Though not included in the analysis, the
YOY P. pectinata captured by dip net had 2- to 3-fold
higher blood glucose levels than YOY caught using
the other capture methods.

126

Glucose pCO2 Lactate Bicarbonate pH Potassium Hematocrit
(mmol l−1) (torr) (mmol l−1) (mmol l−1) (mmol l−1) (%)

YOY 2.30 ± 0.14 (42) 10.13 ± 0.38 (37) 3.56 ± 0.46 (37) 7.05 ± 0.33 (37) 7.17 ± 0.02 (37) 12.58 ± 1.29 (12) 27.81 ± 0.83 (42)
Juvenile 2.31 ± 0.36 (11) 7.97 ± 0.83 (11) 2.00 ± 0.38 (11) 6.63 ± 0.63 (11) 7.25 ± 0.02 (11) 7.70 ± 1.26 (8) 22.54 ± 0.95 (13)
Adult 2.04 ± 0.36 (15) 5.52 ± 0.50 (24) 2.38 ± 0.14 (21) 4.58 ± 0.39 (24) 7.24 ± 0.01 (24) 6.64 ± 0.76 (16) 23.27 ± 0.81 (26)

Table 1. Concentrations of stress physiology parameters (mean ± SE) in smalltooth sawfish Pristis pectinata young of the year 
(YOY), juveniles, and adults. Sample sizes in parentheses

Glucose pCO2 Lactate Bicarbonate pH Potassium Hematocrit
(mmol l−1) (torr) (mmol l−1) (mmol l−1) (mmol l−1) (%)

SLL 1.63 ± 0.14 (13) 5.43 ± 0.52 (17) 2.54 ± 0.28 (16) 4.18 ± 0.31 (17) 7.22 ± 0.02 (17) 6.41 ± 0.55 (11) 23.13 ± 0.67 (21)
DLL 3.12 ± 0.90 (5) 6.10 ± 0.33 (9) 2.53 ± 0.26 (7) 4.82 ± 0.52 (9) 7.22 ± 0.04 (7) 6.72 ± 1.40 (8) 23.50 ± 1.76 (10)
GN 2.16 ± 0.07 (46) 10.01 ± 0.38 (41) 3.40 ± 0.43 (41) 6.96 ± 0.28 (41) 7.17 ± 0.02 (41) 12.26 ± 1.11 (15) 27.44 ± 0.78 (46)
RR 2.98 ± 1.12 (3) 9.80 ± 0.43 (3) 1.16 ± 0.68 (3) 8.76 ± 1.75 (3) 7.26 ± 0.08 (3) 4.58 (1) 23.08 ± 2.81 (3)
DN 7,44 (1) 10.80 (1) 0.93 (1) 9.67 (1) 7.40 (1) 5.84 (1) 17.75 (1)

Table 2. Concentrations of stress physiology parameters (mean ± SE) in smalltooth sawfish Pristis pectinata captured by shallow
longline (SLL), deep longline (DLL), gillnet (GN), rod and reel (RR), and dip net (DN). Sample sizes in parentheses

Glucose pCO2 Lactate Bicarbonate pH Potassium Hematocrit
(mmol l−1) (torr) (mmol l−1) (mmol l−1) (mmol l−1) (%)

FLBLE 2.87 ± 0.81 (7) 8.00 ± 0.51 (7) 0.97 ± 0.25 (7) 7.72 ± 0.74 (7) 7.30 ± 0.03 (7) 10.75 ± 1.54 (7)a 20.89 ± 1.36 (7)
UE 1.97 ± 0.17 (11) 9.94 ± 0.66 (8) 1.11 ± 0.35 (8) 8.55 ± 0.62 (8) 7.26 ± 0.03 (8) 24.23 ± 1.45 (11)
CAL 1.90 ± 0.09 (9) 10.76 ± 0.89 (8) 2.30 ± 0.58 (8) 7.58 ± 0.61 (8) 7.18 ± 0.03 (8) 13.58 ± 1.51 (8)a 28.11 ± 1.30 (9)
Peace 2.35 ± 0.08 (22) 10.33 ± 0.54 (21) 5.09 ± 0.58 (21) 6.32 ± 0.37 (21) 7.12 ± 0.03 (21) 30.26 ± 0.87 (22)

aBecause of low sample size, FLBLE and UE data were pooled, and CAL and Peace data were pooled

Table 3. Concentrations of stress physiology parameters (mean ± SE) in smalltooth sawfish Pristis pectinata young of the year and juveniles
captured in Florida Bay/lower Everglades (FLBLE), upper Everglades (UE), the Caloosahatchee River (CAL), and the Peace River (Peace). 

Sample sizes in parentheses



Blood pCO2 concentrations were significantly
higher in YOY than in juveniles and adults, and con-
centrations of pCO2 were significantly higher in juve-
niles than in adults (ANOVA: F2,69 = 25.91, p <0.001;
Fig. 2A). There was no significant difference in pCO2

concentrations between gillnet captured YOY and ju-
veniles (t-test: t = −1.14, df = 40, p = 0.263). Gillnet
captured P. pectinata had significantly elevated pCO2

compared to both shallow and deep longline captured

individuals (ANOVA: F2,64 = 31.67, p <0.001; Fig. 1B).
While not included in the ANOVA, rod and reel cap-
tured P. pectinata also had elevated pCO2 levels,
comparable to those of gillnet captured individuals.

There was a significant difference in lactate over
ontogeny; however, no significant pairwise differ-
ences between life stages were found (ANOVA: F2,66

= 3.14, p = 0.0497; Fig. 2B). In gillnet captured YOY
and juveniles, YOY lactate levels were significantly
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Fig. 1. Boxplots of (A) glucose concentration (mmol l−1), (B) pCO2 (torr), (C) lactate concentration (mmol l−1), (D) bicarbonate
concentration (mmol l−1), (E) potassium concentration (mmol l−1), and (F) hematocrit (%) in smalltooth sawfish Pristis pectinata
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higher than those of juveniles (Welch’s t-test: t =
−4.00, df = 28.19; p < 0.001). No significant differ-
ences in lactate were found between shallow long-
line, deep longline, and gillnet captured P. pectinata
(ANOVA: F2,61 = 0.86, p = 0.427). While not statisti-
cally compared, rod and reel and dip net captured P.
pectinata displayed lactate levels about half those of
shallow longline, deep longline, and gillnet captured
individuals (Fig. 1C).

YOY and juvenile P. pectinata blood contained sig-
nificantly higher concentrations of bicarbonate than
adults (ANOVA: F2,69 = 11.14, p < 0.001; Fig. 2C).
Bicarbonate was significantly depressed in P. pecti-

nata captured by shallow and deep longlines com-
pared with that of those captured in gillnets
(ANOVA: F2,64 = 20.21, p < 0.001; Fig. 1D). While not
statistically compared, rod and reel and dip net cap-
tured P. pectinata had higher concentrations of bicar-
bonate, similar to those of gillnet captures.

Blood pH of YOY was significantly lower than that
of adults; however, no significant difference in blood
pH was identified between YOY and juveniles or
juveniles and adults (ANOVA: F2,69 = 4.66, p = 0.013;
Fig. 2D). When analyzed separately, YOY blood pH
was significantly lower than juveniles for P. pectinata
captured in gillnets only (t-test: t = 2.41, df = 40, p =
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0.021). No significant differences were found in P.
pectinata blood pH between the 3 capture methods
(ANOVA: F2,64 = 1.30, p = 0.279). While not statisti-
cally compared, the 1 P. pectinata captured by dip
net had a pH that was higher than that of the mean
pH of other capture methods (Table 2).

Concentrations of potassium in the plasma were sig-
nificantly higher in YOY than in juvenile and adult P.
pectinata (ANOVA: F2,33 = 9.43, p <0.001; Fig. 2E).
When analyzing gillnet captured YOY and juveniles,
no significant difference was found in plasma potas-
sium (t-test: t = 1.44, df = 13, p = 0.173). Plasma potas-
sium was significantly higher in P. pectinata captured
in gillnets compared to individuals captured by both
shallow and deep longlines (ANOVA: F2,31 = 10.64, p <
0.001; Fig. 1E). While not statistically compared, the
concentrations of plasma potassium in the rod and reel
and dip net captured P. pectinata were lower com-
pared to individuals caught using the other methods.

A significantly higher percent hematocrit was
observed in YOY compared with juveniles and adults
(ANOVA: F2,78 = 10.45, p <0.001; Fig. 2F). When com-
paring only gillnet captured YOY and juveniles, YOY

percent hematocrit was still observed to be signifi-
cantly higher than that of juveniles (t-test: t = −3.41,
df = 45, p = 0.001). A significant hemoconcentration
was observed in P. pectinata captured in gillnets
compared to those caught by shallow and deep long-
lines (ANOVA: F2,75 = 7.92, p <0.001; Fig. 1F). While
not statistically compared, rod and reel and dip net
captured P. pectinata percent hematocrit was lower
than that of those captured in gillnets, and more com-
parable to that of those captured by shallow and
deep longlines (Fig. 1F).

Habitat quality

No significant difference in YOY or juvenile P.
pectinata blood glucose or pCO2 was observed be-
tween the 4 nurseries sampled (glucose ANOVA: F3,45

= 2.13, p = 0.11; pCO2 ANOVA: F3,40 = 2.31, p = 0.091).
Significantly elevated blood lactate was identified

in YOY P. pectinata sampled from the Peace River
when compared to the other nurseries (ANOVA:
F3,33 = 8.19, p < 0.001; Fig. 3A). While not significant,
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the median blood lactate concentration in YOY from
the Caloosahatchee River was nearly double that
from the FLBLE and UE nurseries.

YOY and juveniles in the UE had significantly
higher bicarbonate than those from the Peace River
(ANOVA: F3,40 = 3.63, p = 0.021; Fig. 3B). When solely
investigating YOY, there was no significant differ-
ence in blood bicarbonate between the 4 nurseries
(ANOVA: F3,33 = 2.86, p = 0.052).

YOY blood pH was significantly lower in the Peace
River than in the FLBLE, although it was not signifi-
cantly lower than that of UE or the Caloosahatchee
River (ANOVA: F3,33 = 4.57, p = 0.009; Fig. 3C).

No significant difference in YOY and juvenile
plasma potassium was identified when results from
FLBLE and UE were pooled, or when those from the
Peace River and Caloosahatchee River results were
pooled (t-test: t = −1.31, df = 13, p = 0.214).

A significant hemoconcentration was observed in
the blood of YOY sampled in the Peace River, when
compared with individuals sampled in FLBLE and UE.
The percent hematocrit was not significantly higher in
the Peace River than in the Caloosahatchee River, and
the Caloosahatchee River YOY did not have signifi-
cantly higher percent hematocrit than that of the UE
(ANOVA: F3,38 = 8.02, p < 0.001; Fig. 3D).

DISCUSSION

This study is the first to document stress physiology
parameters in the smalltooth sawfish Pristis pectinata
by ontogeny, capture method, and habitat quality.
When comparing all of the parame-
ters investigated between P. pecti-
nata and previously examined elas-
mobranchs, P. pectinata appear to
have a similar or less pronounced
stress response, suggesting physio-
logical resiliency in the species. In
particular, glucose and lactate were
relatively low when compared to
other elasmobranchs. Glucose in P.
pectinata was most similar to dem-
ersal species such as the southern
stingray Hypanus americana, which
had a median glucose concentration
of 1.7 mmol l−1 after trawling (Cain
et al. 2004), and the Port Jackson
shark Heterodontus portusjacksoni,
which had average glucose concen-
trations between 1.61 and 2.28
mmol l−1, depending on the treat-

ment and duration, before and after gillnet and long-
line capture simulations (Frick et al. 2010a). In con-
trast, in the 11 species of ram-ventilating sharks
examined by Marshall et al. (2012), the lowest aver-
age glucose concentration was ~5 mmol l−1, and in
the gummy shark Mustelus antarcticus, glucose
ranged from 3.98 to 6.14 mmol l−1 before and after
gillnet and longline capture simulations (Frick et al.
2010a). While behavior was not directly recorded in
the present study, sawfish are known to rest on the
substrate and live a more sedentary lifestyle. During
this study, P. pectinata were observed to rest on the
substrate after capture, similar to H. portusjacksoni
during simulated capture (Frick et al. 2010a), and as
inferred from temperature depth recorder behavior
data in longline captured M. antarcticus (Guida et al.
2016). This behavior could contribute to lower glu-
cose concentrations, as ob served in teleosts (Vijayan
& Moon 1994, Waring et al. 1996), by either stopping
glucose levels from rising higher or allowing time for
clearance.

Average concentrations of lactate, one of the most
commonly used indicators of stress, in P. pectinata
ranged from 0.9 to 3.5 mmol l−1 over ontogeny and
different capture methods and were very low relative
to those of other elasmobranchs studied to date
(Fig. 4). For example, Marshall et al. (2012) examined
blood lactate in 11 shark species captured by long-
line, and only 1 species, the oceanic whitetip shark
Carcharhinus longimanus, displayed a mean lactate
concentration less than 4 mmol l−1. Moyes et al.
(2006) found that lactate was one of the best predic-
tors of post-release mortality, with moribund blue
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shark Prionace glauca having blood lactate values
around 20 mmol l−1. Hight et al. (2007) reported mor-
tality occurred with lactate ~16 mmol l−1 in P. glauca,
19 mmol l−1 in common thresher sharks Alopias vul -
pinus, and 20 mmol l−1 in shortfin mako sharks Isurus
oxyrinchus; however, they also reported survival
based on tag recaptures of I. oxyrhinchus with lactate
values at tagging ranging from 10.3 to 14.7 mmol l−1

as well as for 1 A. vulpinus with a lactate value at tag-
ging of 23 mmol l−1. In Cain et al. (2004), bottom-
trawled H. americana displayed a median lactate of
3.1 mmol l−1, similar to that of P. pectinata in the pres-
ent study (see Fig. 4).

Lactate concentrations have been found to be sig-
nificantly higher in gillnet captured bonnethead
sharks Sphyrna tiburo, bull sharks C. leucas, lemon
sharks Negaprion brevirostris, and M. antarcticus
than those captured by longline (Frick et al. 2010a,
Hyatt et al. 2012). While lactate concentrations in P.
pectinata had the same trend, the average concentra-
tion was lower than that for all the aforementioned
elasmobranchs (Frick et al. 2010a, Hyatt et al. 2012).
Additionally, the handling time prior to obtaining the
blood sample is likely to increase the stress response
cascade. Although this handling time is greatest for
longline captured adults, the lactate level was com-
parable, if not higher, in gillnet captured P. pectinata
which experienced less handling time prior to sam-
pling. This reinforces the US research permit re -
quirement for constant monitoring of all gillnets tar-
geting P. pectinata.

Plasma potassium concentration of gillnet captured
P. pectinata was the only parameter examined in the
present study that was neither comparable to nor in-
dicative of lower stress than that of other elasmo-
branchs (Frick et al. 2010a, Marshall et al. 2012). De-
spite relatively elevated concentrations of potassium,
tag-recapture and tracking data suggested that no P.
pectinata captured during this study died post-re-
lease. This may indicate that P. pectinata has a higher
threshold for the damaging effects of hyperkalemia,
that this species has the ability to recover from
acutely elevated potassium, as has been ob served in
spiny dogfish Squalus acanthias (Mandelman & Far-
rington 2007), or that potassium may not be a reliable
indicator of physiological stress in this species. Addi-
tionally, despite following identical protocols to other
elasmobranch blood collections, P. pectinata blood
samples all showed high levels of hemolysis, which
may have resulted in greater concentrations of
plasma potassium, similar to what was found in S.
acanthias by Martini (1974). This could limit the use
of this parameter for comparative purposes.

Ontogeny

Of the 7 stress physiology parameters that were
investigated, 6 were found to vary significantly over
ontogeny. However, when capture method was held
constant to elucidate stage-specific differences, only
bicarbonate, pH, and hematocrit varied significantly,
suggesting that our results investigating physiolo -
gical stress as functions of ontogeny and capture
method were confounded.

Both YOY and juvenile P. pectinata had signifi-
cantly higher concentrations of bicarbonate than
adults. Because bicarbonate can act as a buffer for
lactate increases, it is possible that this physiologi-
cal functioning is more efficient, or only occurs in
the adult stage, since YOY had the highest lactate
as well as the highest bicarbonate concentrations.
However, it is also likely that gillnet captured P.
pectinata were removed from the net and sampled
too quickly to observe a decline in bicarbonate.
Significantly lower blood pH and a much larger
range in pH were observed in YOY and gillnet
captured juveniles than in adults. This is likely
driven by life stage, since this was observed when
capture method was held constant, and is likely a
result of higher lactate, higher pCO2, and higher
bicarbonate concentrations, all of which can con-
tribute to blood acidosis. Dissimilar to the results
here, when investigating the pH response over
total length in 5 shark species, Gallagher et al.
(2014) did not find a significant interaction; how-
ever, that study had a smaller sample size over a
smaller size range. A significant hemoconcentration
of the blood was observed in the present study
in YOY P. pectinata when compared with juveniles
and adults, and this significant trend was still ob -
served when only gillnet captured YOY and juve-
niles were analyzed. The significant hemoconcen-
tration observed in YOY P. pectinata was likely
because of their higher range of lactate concentra-
tions. Bicarbonate, pH, and hematocrit are directly
linked to metabolic and respiratory stress, which is
typically first indicated by pCO2 and lactate. Over-
all, when investigating all of the stress physiol -
ogy parameters, there was likely little change in
the response as a result of age, but rather from
capture method. Similarly, Mandelman & Skomal
(2009) compared stress parameters over fork length
of 4 shark species, and did not find any differences
as a result of length; however, they noted their low
intraspecific variability in size and variation in
capture duration as potential reasons for not de -
tecting differences over ontogeny.
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Capture method

Gillnet captured P. pectinata had significantly
higher glucose, pCO2, bicarbonate, potassium, and
hematocrit compared to longline captured individu-
als; however, lactate and blood pH were not signifi-
cantly different between these capture methods.
Gillnet capture may induce a larger stress response
relative to that of a longline because of the limitation
in mobility, and potential impediment of ventilation
(Manire et al. 2001), whereas longline capture allows
a fish to continue swimming or lie on the bottom with
unrestricted ventilation (Manire et al. 2001, Hyatt et
al. 2012, Guida et al. 2016). However, field observa-
tions suggest that juvenile P. pectinata react by set-
tling onto the substrate with the rostrum entangled in
the mesh. Dissimilar to the results of the present
study, Hyatt et al. (2012) found that lactate concen-
trations were significantly higher and pH was signif-
icantly lower in gillnet captured S. tiburo, C. leucas,
and N. brevirostris, although they found no signifi-
cant difference in blood pCO2 and bicarbonate. In
elasmobranchs, because bicarbonate concentrations
can be directly related to lactate concentrations
(Holeton & Heisler 1983), it would be expected that
all of the capture methods in the present study
should have comparable depletions of bicarbonate;
however, bicarbonate was only found to be depleted
in shallow and deep longline captured P. pectinata.
The differences in blood bicarbonate across capture
methods may be a result of the greater time lag
between capture and sampling for longline, during
which bicarbonate buffering may occur. Mean potas-
sium in longline captured P. pectinata was similar to
that observed in sharks (Frick et al. 2010a, Marshall
et al. 2012); however, the significantly higher potas-
sium concentrations observed in gillnet captured P.
pectinata were likely related to greater instances of
hemolysis in the blood of YOY. Similarly, the signifi-
cant hemoconcentration observed in gillnet captured
P. pectinata when compared with longline captured
individuals could also be related to the predomi-
nance of YOY captured by gillnet. This is further sup-
ported by the significant hemoconcentration found in
gillnet captured YOY compared to juveniles.

The only parameter that indicated any significant
difference in the stress response between shallow and
deep longline was blood glucose, which indicated
greater stress in deep longline caught individuals.
This may be because of the time required to pull the P.
pectinata 40−80 m from the substrate to the surface.

While not statistically analyzed, lactate, bicarbon-
ate, pH, potassium, and hematocrit indicated less

stress with rod and reel and dip net captures. Al -
though blood samples were collected as soon as the
fish was restrained, some handling may have
induced greater stress in longline and gillnet cap-
tured P. pectinata, because rod and reel and dip net
captured individuals were sampled within 1 min of
gear contact. The rod and reel gear used in this study
was heavier than that commonly used by recre-
ational fishers, reducing the fight time to less than
1 min. Baseline or near baseline levels of lactate in
some species of sharks have been reported between
0 and 1 mmol l−1 (Cliff & Thurman 1984, Spargo 2001,
Skomal 2006, Brooks et al. 2012); therefore, these
similar concentrations in rod and reel and dip net
captured P. pectinata may represent near-baseline
levels of lactate for this species.

Overall, the results indicate that gillnet capture
may induce both greater relative metabolic and res-
piratory stress in this species, although it is important
to acknowledge that ontogeny may be confounding
these results, particularly regarding potassium and
hematocrit. Regardless, comparison to previous work
on other elasmobranchs suggests that stress was
 relatively low for P. pectinata across all capture
methods.

Habitat quality

Of the 7 stress physiology parameters assessed,
lactate, bicarbonate, pH, and hematocrit significantly
differed in YOY and juveniles between nurseries.
These parameters suggest that there may be chronic
metabolic stress occurring in the more anthropogeni-
cally altered nurseries, the Peace and Caloosa-
hatchee rivers, than in the relatively pristine nurs-
eries in the TTI/ENP Unit. Changes in these 4 stress
physiology parameters are likely the result of habitat
degradation in the form of less refuge from human
and predator interactions, and poorer abiotic condi-
tions, which could elicit behavioral and physiological
compensations (Skomal & Mandelman 2012), poten-
tially leading to increased metabolic activity and,
subsequently, higher lactate and hematocrit, as well
as lower bicarbonate and pH. Chronic stress related
to habitat loss can have negative population-level
effects through reproductive, growth, and immune
system impairments (Sapolsky 1992, Wingfield &
Romero 2001). These observations are especially rel-
evant from conservation and management perspec-
tives in light of recent evidence that P. pectinata
exhibit interannual site fidelity to the Peace and
Caloosahatchee rivers (Feldheim et al. 2017).
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Conclusions

Lactate is a commonly used indicator of stress and
capture survival in elasmobranchs, and P. pectinata
blood lactate concentration was among the lowest
studied in elasmobranchs to date. Lactate was similar
among capture methods. The lower concentrations of
lactate observed in P. pectinata are likely in part
because this species is a benthic, sedentary fish, and
thus less sensitive physiologically to capture than
most other previously examined elasmobranchs.

Our results indicate there may be chronic metabolic
stress associated with the more anthropog enically in-
fluenced nurseries than in the relatively pristine nurs-
eries. P. pectinata in the Peace and Caloosahatchee
rivers had significantly higher lactate and hematocrit,
and decreased pH and bicarbonate in comparison to
individuals in the TTI/ENP Unit.

Future directions of P. pectinata stress physiology
research should focus on sampling more individuals
using the rod and reel capture method. This is likely
the most common capture method that P. pectinata
are exposed to today, and understanding how P.
pectinata respond physiologically to this capture
method is of great importance for understanding how
they may recover once released. Additionally, similar
to studies by Frick et al. (2010a,b) in which stress
responses were compared between simulated long-
line, gillnet, and trawl captured H. portusjacksoni
and M. antarcticus, P. pectinata that are captured via
shrimp trawl should also be sampled to determine if
these fish have the potential to survive once released,
based on comparing their biochemical parameters to
those measured in other moribund elasmobranchs.
Overall, the results of our study indicate that P. pecti-
nata is a species resilient to capture using the meth-
ods studied here. Ongoing tagging and telemetry
studies of animals captured in these surveys indicate
that post-release survival is very high. These results
suggest that if harvest restrictions are enforced and
suitable habitats are protected, the recovery outlook
is positive for this imperiled species.
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