

Oyster Modeling Overview ABSI CAB 01/08/2020

Ed Camp Fisheries and Aquatic Sciences, University of Florida

What I want to tell you about:

- 1. How this work fits in the broader project
- 2. My task
- 3. CAB role
- 4. Model in a nutshell
- 5. Model objectives
- 6. Model structure
- 7. Model data
- 8. Model outputs

1. How this fits in the bigger picture

- Hydrologic model
 - Climate, water use & mgmt.
 → water, nutrients entering bay
- Hydrodynamic model
 - Water entering bay → water qual. throughout bay
- Oyster model

2. My Task

- Guide development of oyster model
 - Oyster populations, fisheries
 - Scientifically rigorous and CAB-approved

3. CAB role

- Skepticism
- Input and help
- Discussion

for (i in 2:years){

for (k in 2:(nsites+1)) {

et[i,k]=0; if(i>=fish_strt) et[i,k] = total_et eff[k] et[i,1]=et[i,2]; et[i,nsites+2]=et[i,nsites+1]; hr[i,k] <- fishing (1 exp(-et[i,k] qt)) hr[i,1]=hr[i,2]; hr[i,nsites+2]=hr[i,nsites+1];

st[i,sites]=0; if(i>=30) st[i,sites] = stock[k]*(1-ism)

ssb_tot[i,k] = eggs[i-1,k] + eggs_hat[i-1,k]
ssb_tot[i,1]-ssb_tot[i,2]; ssb_tot[i,nsites+2]-ssb_tot[i,nsites+1]

larv[i,k] = sum(eggs[i-1,sites] * prob_mat[k,sites];

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv_hat[i,k] = sum(eggs_hat[i-1,sites] * prob_mat[k,sites])

larv_hat[i,1]=larv_hat[i,2]; larv_hat[i,nsites+2]=larv_hat[i,nsites+1]; #mirros larv_tot[i,k] = larv[i,k] + larv_hat[i,k] #total wild and hat eggs larv_tot[i,1]=larv_tot[i,2]; larv_tot[i,nsites+2]=larv_tot[i,nsites+1]; #mirros

N2_tot[i,k] = N1_hat[i,k] = N1_w[i,k] = st[i,k] R_hat[i,k] = N1_hat[i,k] a2_hat[k]/(1 b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] a2_st[k]/(1 b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] a2[k]/(1 b2[i,k] N2_tot[i,k])

nage[i,1,k] R[i,k] So.5 nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1] nage_hat[i,1,k] = R_hat[i,k] So.5 nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,n nage_st[i,1,k] = R_st[i,k] So.5 nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsites+2]

#open site loop back up agai

#assuming fixed effort, so just a function of total state-wide
#not stocking for first 30 years, then stocking at number stock
#mirrors

#fishing is just a flag, then harvest rate per ususal
#mirrors

ant rate# not stocking for first 30 years, then stocking at num

#total wild and hat eggs
#do i need this?

Use this dispersal to account for dispersal, but recognize the #Use this dispersal to check on null model, but reocnize that

#total N1's entering N2 stage, #hatchery recruits #stocked recruits #wild recruits

#So.5 is set to 1, so this isn't operational here (used for when #mirrors

or (i in 2:years){
 for (k in 2:(nsites+1))

1. Oysters and fisheries assumptions

hr[i,1]=hr[i,2]; hr[i,nsites+2]=hr[i,nsites+1];

st[i,sites]=0; if(i>=30) st[i,sites] = stock[k]*(1-ism)

ssb_tot[i,k] = eggs[i-1,k] + eggs_hat[i-1,k]
ssb_tot[i,1]=ssb_tot[i,2]; ssb_tot[i,nsites+2]=ssb_tot[i,nsites+1];

larv[i,k] = sum(eggs[i-1,sites] * prob_mat[k,sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv_hat[i,k] = sum(eggs_hat[i-1,sites] * prob_mat[k,sites])

larv_hat[i,1] larv_hat[i,2]; larv_hat[i,nsites+2] larv_hat[i,nsites+1]; #mirros larv_tot[i,k] = larv[i,k] + larv_hat[i,k] #total wild an larv_tot[i,1] larv_tot[i,2]; larv_tot[i,nsites+2] larv_tot[i,nsites+1]; #mirros

N1_hat[i,k] = (larv_hat[i,k] (1 hert_hat)) f[i,k] a1_hat[k]/(1 b1[i,k] larv_tot[i,k]) N1_w[i,k] = (larv[i,k] = (hert_hat larv_hat[i,k])) f[i,k] a1[k]/(1 b1[i,k] larv_tot[i

N2_tot[i,k] = N1_hat[i,k] + N1_w[i,k] + st[i,k] R_hat[i,k] = N1_hat[i,k] a2_hat[k]/(1 b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] a2_st[k]/(1 b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] a2[k]/(1 b2[i,k] N2_tot[i,k])

nage[i,1,k] = R[i,k] So.5 = = So.5 i nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1] = mirror nage_hat[i,1,k] = R_hat[i,k] So.5 nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,nsites+1] nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsites+1]

for (i in 2:years){
 for (k in 2:(nsites+1))

Oysters and fisheries assumptions Translate to math and statistical equations

st[i,sites]=0; if(i>=30) st[i,sites] = stock[k]*(1-ism

N2_tot[1,k] = N1_hat[1,k] = N1_w[1,k] = st[1,k] R_hat[i,k] = N1_hat[i,k] a2_hat[k]/(1 b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] a2_st[k]/(1 b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] a2[k]/(1 b2[i,k] N2_tot[i,k])

nage[i,1,k] R[i,k] So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage_hat[i,1,k] = R_hat[i,k] So.5
nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,
nage_st[i,k] = R_st[i,k] So.5

nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsites+1]

for (i in 2 years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input

ssb_tot[i,1]=ssb_tot[i,2]; ssb_tot[i,nsites+2]=ssb_tot[i,nsites+1]

larv[i,k] = sum(eggs[i 1, sites] * prob_mat[k, sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv_hat[i,k] = sum(eggs_hat[i-1,sites] * prob_mat[k,sites])

larv_hat[i,1]=larv_hat[i,2]; larv_hat[i,nsites 2]=larv_hat[i,nsites larv_tot[i,k] = larv[i,k] = larv_hat[i,k] larv_tot[i,1]=larv_tot[i,2]; larv_tot[i,nsites 2]=larv_tot[i,nsites

N1_hat[i,k] = (larv_hat[i,k] (1 hert_hat)) f[i,k] a1_hat[k]/(1 b1[N1_w[i,k] = (larv[i,k] (hert_hat larv_hat[i,k])) f[i,k] a1[k]/(1

N2_tot[i,k] = N1_hat[i,k] = N1_w[i,k] = st[i,k] R_hat[i,k] = N1_hat[i,k] a2_hat[k]/(1+b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] a2_st[k]/(1+b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] a2[k]/(1+b2[i,k] N2_tot[i,k])

nage[i,1,k]= R[i,k] So.5 nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1] nage_hat[i,1,k] = R_hat[i,k] So.5 nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,n nage_st[i,1,k] = R_st[i,k] So.5 nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsite

#wild recruit

#So.5 is set to 1, so this isn't operational here (used for when #mirrors

is where you would have added post recrui

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data

nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1] #mirrors
nage_hat[i,1,k] = R_hat[i,k]*So.5
nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,nsites+1]

or (i in 2:years){
 for (k in 2:(nsites#1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data
- 5. Repeat 3-4

larv_hat[i,k] = sum(eggs_hat[i-1,sites] * prob_mat[k,sites])

N1_hat[i,k] = (larv_hat[i,k] (1-hert_hat)) = f[i,k] a1_hat[k]/(1-b1[i,k] larv_tot[i, N1_w[i,k] = (larv[i,k] + (hert_hat larv_hat[i,k])) = f[i,k] a1[k]/(1-b1[i,k] larv_tot

N2_tot[i,k] = N1_hat[i,k] + N1_w[i,k] + st[i,k] R_hat[i,k] = N1_hat[i,k] a2_hat[k]/(1+b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] a2_st[k]/(1+b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] a2[k]/(1+b2[i,k] N2_tot[i,k])

nage[i,1,k]= R[i,k]*So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage_hat[i,1,k] = R_hat[i,k]*So.5
nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,nsites+2]
nage_st[i,1,k] = R_st[i,k]*So.5
nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsites+2]

#So.5 is set to 1, so this isn't operational here (used for who #mirrors

for (i in 2:years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data
- 5. Repeat 3-4
- 6. Make predictions
 - -Environment
 - -Management -Restoration

N2_tot[i,k] = N1_hat[i,k] = N1_w[i,k] = st[i,k] R_hat[i,k] = N1_hat[i,k] =a2_hat[k]/(1+b2[i,k] N2_tot[i,k]) R_st[i,k] = st[i,k] =a2_st[k]/(1+b2[i,k] N2_tot[i,k]) R[i,k] = N1_w[i,k] =a2[k]/(1+b2[i,k] N2_tot[i,k])

nage[i,1,k]= R[i,k]*So.

nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage_hat[i,1,k] = R_hat[i,k]*So.5

nage_hat[i,1,1] = nage_hat[i,1,2]; nage_hat[i,1,nsites+2] = nage_hat[i,1,nsi
nage_st[i,1,k] = R_st[i,k] So.5

nage_st[i,1,1] = nage_st[i,1,2]; nage_st[i,1,nsites+2] = nage_st[i,1,nsites+1

5. Model Objectives

1. Make discussions easier/more fruitful

- 2. Predict likely and unlikely outcomes of action
- 3. Increase understanding of oysters & fisheries

4. Be a perfect representation of reality

What: oyster populations & fisheries

What: oyster populations & fisheries
Where: AB, spatially explicit to large reef level

- What: oyster populations & fisheries
- Where: AB, spatially explicit to large reef level
- When: Future simulation based on past

- What: oyster populations & fisheries
- Where: AB, spatially explicit to large reef level
- When: Future simulation based on past
- "Structure": Age- and stage-structured, so:
 - Oyster larvae
 - Oyster recruits
 - Oyster populations in monthly ages
 - Oyster harvest
 - Oyster shell

7. Model Data

- Prior oyster/fishery information
 - Natural mortality, growth, env. relationships
- Fisheries data
- Fisheries independent data

Perfect data is not expected

8. Model Outputs

- Oyster population metrics
 - Recruits
 - Adults
 - Shell
- Fishery Metrics
 - Fisher behavior?
 - Harvest
 - Yield
 - Price/revenue?

8. Model Outputs: what's the point?

- "What if" analyses
 - Harvest
 - Restoration
 - Water use/mgmt.
- Outcomes
 - Expected
 - Unexpected
 - Ranges probable

Questions and concerns

edvcamp@ufl.edu