

Oyster Reef Management

Apalachicola Bay

Jonathan Brucker Central Panhandle Aquatic Preserves March 11, 2020

Major features of Franklin County, including the Apalachicola Bay estuarine system and oyster reef areas. Oyster map source: *Oyster Integrated Mapping and Monitoring Program Report for the State of Florida*, Florida Fish and Wildlife Conservation Commission (2019).

Oyster Restoration

- To promote reef development for oysters by restoring existing oyster reef habitat that had been degraded, depleted, or reached its productive life span.
- The placement of suitable cultch material on existing oyster bars for the setting of native oyster larvae and oyster colonization is a widely accepted management practice.
 - Cultch any suitable hard substrate suitable for the attachment of settling oysters (spat).
- Placing cultch material in areas where natural reproduction occurs:
 - Creates three-dimensional reef structure
 - Stimulates spat setting
 - Accelerates the recovery process
 - Increases natural productivity
 - Sustains oyster fisheries
 - Enhances ecosystem community functions

Photo Credit: FDACS

Benefits of Restoration

Photo Credit: FDEP/CPAP

• Ecological benefits

- Increased fishery and wildlife habitat
- Increased biodiversity and trophic dynamics
- Filtering capacity to improve water quality and recycle nutrients
- Improved structural stability to reduce coastal erosion and protect nearshore resources.

Economic benefits

- Harvesting, processing, and marketing fishery products
- Commercial fisheries provide employment and income

Historical Cultch Deposition

- Shell additions to the bay were first recommended around 1885.
- The Florida Division of Agriculture planted the first known shell, 15,000 barrels' worth, in 1913.
- Shell distribution increased substantially around 1925 (P. Zajicek, FDACS).
- As the result of a State-mandated program requiring that harvested oyster shell (sometimes augmented with limerock) be returned to public oyster beds, shell distribution regularly occurred after 1949.
- As of 1977, more than 4 million bushels of shell and rock had been deposited over 400 ha (1,000 ac) of bottom in Apalachicola Bay (Whitfield and Beaumariage, 1977).
- Shell buy-back programs were implemented to pay dealers for collected shell; however, these programs rely on grants and do not have a permanent source of funding.

Source: Cultch Deposition Locations, Volumes and Population Assessments of Oyster Reefal Complexes in Apalachicola Bay (Draft), Florida Department of Agriculture and Consumer Services, Division of Aquaculture (2018).

Photo Credit: Florida Memory

- <u>1999-2004</u>: 44,674 yds³ of processed shell (179 acres @ 250 yd³/acre)
- <u>2005-2007</u>: Cultching activities only occurred in Escambia, Santa Rosa, and/or Bay counties
- <u>2008-2012</u>: 44, 556 yds³ of processed and fossilized shell (178 acres @ 250 yd³/acre)
- <u>2013</u>: No contractual clutching activities
- <u>2014</u>: 6,125 yds³ of fossilized shell (30.5 acres @ 200 yd³/acre)
- <u>2015</u>: Natural Fish and Wildlife Foundation (NFWF) Cultch Density Study
 - <u>3,000</u> yds³ fossilized shell at three experimental sites
 - Five 2-ac parcels were cultched at different shell densities (0, 100, 200, 300, & 400 yd3/ac $\,$
- <u>2015</u>: Natural Resource Damage Assessment (NRDA) Oyster Cultch Recovery Project
 - 24,840 yds³ fossilized shell on 16 debilitated oyster reefs (124 acres @ 200 yd³/acre)
- <u>2017</u>: Gulf Coast Ecosystem Restoration Council (GCERC or RESTORE)
 - 95,500 yd³ lime rock aggregate on 14 debilitated oyster reefs (317 acres @ 300 yd³/acre)

Photo Credit: New York Times

Photo Credit: University of Florida/IFAS

Photo Credit: FDACS

Photo Credit: FDACS

Photo Credit: FDEP/ANERR

Photo Credits: FDEP/ANERR

Photo Credit: FDACS

Photo Credit: FDEP/ANERR

Central Panhandle Aquatic Preserves

Central Panhandle Aquatic Preserves

Photo Credits: FDEP/CPAP

- <u>2015</u>: Natural Resource Damage Assessment (NRDA) Oyster Cultch Recovery Project
 - 24,840 yds³ fossilized shell on 16 debilitated oyster reefs (124 acres @ 200 yd³/acre)
 - Mapping and monitoring
- <u>2017</u>: Gulf Coast Ecosystem Restoration Council (GCERC or RESTORE)
 - 95,500 yd³ lime rock aggregate on 14 debilitated oyster reefs (317 acres @ 300 yd³/acre)
 - Mapping and monitoring

Looking Ahead

- Adding cultch material should be considered as an essential management action if the current shell budget is deficient.
- Replacing cultch material should not be exclusively expected to guarantee recovery of the fishery.
- If oyster spat recruitment remains low, even large amounts of cultching may not lead to rapid oyster reef recovery.
- All restoration actions, including shelling, should be as carefully managed, monitored, quantified, and tracked.
- Examine past and current restoration efforts to maximize potential future efforts.

Photo Credit: FDEP/CPAP

Thank you!

Jonathan Brucker Central Panhandle Aquatic Preserve Manager Jonathan.Brucker@FloridaDEP.gov or 850-670-7723

14