LEVELS OF HEAVY METALS AND PESTICIDES IN APALACHICOLA BAY

Adebayo Solanke, PhD (candidate) Michael Martínez-Colón, PhD

FLORIDA AGRICULTURAL AND MECHANICAL UNIVERSITY

FAA

INTRODUCTION

• Estuaries are transitional environments between marine and freshwater systems

 These aquatic zones receive 80%-90% of all waste released from numerous point- and non-point sources as a result of overpopulation, industrialization, and farming among others

 Unfortunately, estuaries function as "natural reservoirs" of heavy metals, pesticides, microplastics, etc.

INTRODUCTION (CONT)

 Apalachicola Bay, part of the National Estuarine Research Reserve system, is known for its high oyster yields and commerce

 In 2020, a five-year moratorium was placed on wild oyster harvest to allow oyster population recovery

 It is unclear what environmental stressors (e.g., salt-water intrusion, droughts, river runoff, nutrients, heavy metals, and pesticides) have contributed to the decline in oysters

PURPOSE AND OBJECTIVES

 Provide information to stakeholders on the levels of heavy metals and pesticides from temporal (sediment cores) and spatial (surface samples) perspectives

 Establish historical (<100 years) reference conditions to help ANERR stakeholders assess pre-polluted and/or pre-management conditions

PARAMETERS OF INTEREST

- Grain size analysis + Total organic carbon (TOC)
- Heavy metals:

Pollutants	Oxygenation Indicators
Co (Cobalt)	Th (Thorium)
As (Arsenic)	U (Uranium)
Se (Selenium)	Mo (Molybdenum)
Pb (Lead)	Re (Rhenium)
Fe (Iron)	
Cu (Copper)	
Cd (Cadmium)	
Ni (Nickel)	
Zn (Zinc)	

• Organochlorine (OC) pesticides: aldrin, dieldrin, endosulfan, endrin, heptachlor, and methoxychlor

PROGRESS UPDATE

Sample	Sampling	Grain size	тос	Heavy Metals	Pesticides	Radiometric Dating
Surface	Complete	Yet to start	Almost done		Yet to start	N/A
Core 6						Almost done
Core 2			Vot to start			
Core 1			Tet to start		N/A	

PROGRESS UPDATE (SEDIMENT CORE)

ACKNOWLEDGMENT

I want to thank the following funding sources:

- Apalachicola Bay System Initiative (ABSI)
- FAMU-Title III
- National Academies of Sciences-Gulf Research Program
- College of Marine Science (U. of South Florida) for radiochemistry

I want to thank Jason Garwood, Ethan Bourque, and Dr. Josh Breithaupt for their help during field work.