ABSI Modeling
 Hydrographic Modeling Update

Dr. Steve Morey
Dr. Xu Chen

Florida A\&M University
With Adam Alfasso, Florida State University

ABSI Bio-Physical Model Concept

ABSI Hydrodynamic Model Configuration

- Finite Volume Coastal Ocean Model (FVCOM)
- Mesh Resolution: 800m-30m (water and land)
- Vertical Grid: 10 layers
- Surface Forcing: CFSR (atmospheric model) and Wind Observations
- River Discharge: USGS or Leitman's Model
- River Temperature: NOAA NOS station

- Initial Condition (U, V, T, S): HYCOM Reanalysis
- Boundary Condition (Tide, T, S): HYCOM Reanalysis
- Model Periods run to date: 1998, 2011-2012, 2019
- 0

Model Results: Water Surface Elevation

Model vs. Observation (Temperature 2019)

Model vs. Observation (Salinity 201901)

Model vs. Observation (Salinity 2019)

Model vs. Observation (Salinity 2019 vs. 2012)

Model vs. Observation (Salinity 2012)

Sub-domain Videos (Salinity 201203)

Dry Bar

Cat Point

Sea Surface Salinity 2012-03-01 00:00:00 (obs:X, model:dot)

Hydrodynamic Model-Derived Products

Model output is analyzed to develop derived products informative to the stakeholder community and to inform restoration efforts.

- Model hindcasts to estimate past conditions in the bay
- Predictions of possible future scenarios (freshwater flow / climate)
- Statistical analyses that can provide information for forecasting future conditions
- Mapped products of environmental variables
- Input to Larval dispersion models
- Input to habitat suitability models

Maps of salinity quantiles (median, $25^{\text {th }}$ percentile, $75^{\text {th }}$ percentile) corresponding to wet, normal, and dry March.

Wet (1998)
25th Percentile of Surface Salinity for 199803

Normal (2019)
25th Percentile of Surface Salinity for 201903

50th Percentile of Surface Salinity for 201903
River Discharge (m³/s)

75th Percentile of Surface Salinity for 201903

Dry (2012)
25th Percentile of Surface Salinity for 201203

75th Percentile of Surface Salinity for 201203

Habitat Suitability Models

The hydrodynamic model variables can be used as input to Oyster Habitat Suitability Models.

