The ABSI seeks to gain insight into the root causes of decline of the Apalachicola Bay ecosystem, and the deterioration of oyster reefs. Ultimately, the ABSI will help develop a management and restoration plan for oyster reefs and the long-term health of the bay.

ABSI funding is provided by Triumph Gulf Coast Inc. and Florida State University.
Table of Contents

Executive summary 1

1. Introduction 6

2. Habitat and environment 6
 2.1 Subtidal mapping 6
 2.2 Fresh-water flow dynamics 7
 2.3 Bio-physical model of the Apalachicola Bay System 9
 2.4 Predictive habitat suitability modeling 12

3. Oyster biology 14
 3.1 Genetic structure 14
 3.2 Disease and other stressors 19
 3.2.1 Identifying the impacts of disease on oysters 19
 3.2.2 Understanding disease thresholds in the Apalachicola Bay 20
 3.3.3 Exploring consequences of disease for Apalachicola Bay 20
 3.3 Stress responses and physiological tolerances 21
 3.4 Effect of salinity on juvenile oysters 23
 3.5 Stress responses of oyster early life-stages 24

4. Oyster ecology 24
 4.1 Intertidal monitoring 24
 4.2 Spatial and temporal patterns of intertidal oyster reefs 29
 4.3 Subtidal monitoring 31
 4.4 Intertidal and subtidal recruitment 34
 4.5 Impacts of oyster populations on community development 36

5. Restoration 37
 5.1 Oyster restoration experiments 37
 5.2. Improving restoration success in the bay scallop 40

6. System ecology 42
 6.1 Apalachicola Bay food web and sediments: 1994 vs. 2020 42
 6.2 Influence of oysters on function and change in coastal ecosystems 47
 6.2.1 Investigating changing benthic sediment characteristics in Apalachicola Bay 48
 6.2.2 Oyster Shell Dissolution Dynamics in Apalachicola Bay Region 49
 6.2.3 Coastal carbon dynamics occurring because of mangrove replacement of regional tidal marshes 50
 6.2.4 Vulnerability of regional wetlands to sea-level rise and changing sediment delivery from Apalachicola River 51
 6.3 Apalachicola Bay environmental evolution and pollutant status 53

7. Literature Cited 57
Habitat and Environment

2.1 Sub-tidal mapping
2.2 Fresh-water flow dynamics

- ACOE water control manual does not consider flows into the estuary
- ACF Stella model used by Dr. Steve Leitman to model fresh-water flow into Apalachicola Bay
- Model has been calibrated with ACOE model
- Effects of future climate on river flows assessed and manuscript close to submission
- Storage and flow analyses indicate there is sufficient storage capacity for management to improve river flow into AB.
- Metrics being developed to define flow regimes that optimize benefit to oyster populations in AB
Habitat and Environment

2.3 Bio-physical model of the Apalachicola Bay System

Maps of salinity quantiles (median, 25th percentile, 75th percentile) corresponding to wet, normal, and dry March.

River Discharge (m³/s)

March

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50th Percentile of Surface Salinity for 1998</td>
<td>50th Percentile of Surface Salinity for 2019</td>
<td>50th Percentile of Surface Salinity for 2012</td>
</tr>
<tr>
<td>75th Percentile of Surface Salinity for 1998</td>
<td>75th Percentile of Surface Salinity for 2019</td>
<td>75th Percentile of Surface Salinity for 2012</td>
</tr>
</tbody>
</table>
2.4 Predictive habitat suitability model for oysters

Models will be run under current and projects climate scenarios
3.1 Genetic structure of oyster populations in the Florida Panhandle

- Some population structuring and IBD
- Populations are not completely mixed
- Additional sequencing underway to resolve outlying populations
3.2 Disease and other stressors

Oyster disease in the Apalachicola Bay:
Infections as indicators of environmental change, ecosystem diversity, and human risk
Main objectives:

- Short-term and long-term consequences of interacting stressors
- Ontogenetic shifts, carry-over effects, and transgenerational impacts
- Metabolomics and respirometry to identify energetic and physiological effects

Figure 1: Average monthly temperature (A) and salinity (B) across six years (2015 - 2020). Data downloaded from NOAA NERRS Cat Point Station in Apalachicola Bay, FL.
3.4 Effect of salinity on juvenile oysters – laboratory experiments

Summer
- Field surveys of drill abundance at sites with contrasting salinity regimes.
- Cage studies to assess predation rates, survival of outplant oysters.

Follow up lab studies on drill consumption rates, survival, habitat use across salinity.
Oyster biology

3.5 Stress responses of oyster early life-stages

This is undefined – it’s a general dissertation topic for a PhD student who joined FSU in fall 2021.
Oyster ecology

4.1 Intertidal monitoring

Indian Lagoon, East Cove, Carabelle, Alligator Harbor
Five x 0.25 m² quadrats per site

Spring and Fall:
- Total weight and volume of sample
- Number of live oysters and boxes
- Shell length, width, height
- Condition index (5/site)
- Reproductive status (5/site)
- Disease (5/site)
- Spat collectors (3/site)
- Environmental data (T, S, DO, Turb, pH)

Monthly:
Oyster ecology

4.2 Spatial and temporal patterns of intertidal oyster reefs

Orthomosaics of drone footage

Oyster clusters extracted from digital elevation models using ArcGIS pro
Oyster ecology

4.3 Subtidal monitoring

Sampling with hand tongs to cover wide spatial extent
Six replicate samples per site (3 each side of the vessel)
Total volume of material
live oysters, # boxes, shell height of first 100 individuals
4.4 Intertidal and subtidal recruitment

Intertidal recruitment – mean monthly spat counts from spat traps (3/ reef, 5 reefs/site)

Subtidal recruitment
26 locations in Apalachicola Bay and St George Sound

AH – Alligator Harbor, CR – Carabelle River, EC – East Cove, IL – Indian Lagoon
4.5 Impacts of oyster populations on community development

A. Change in annual oyster CPUE and [Chl A] 2002-2020

B. CPUE for other commercial species dependent on benthic (flounder, shrimp) and pelagic (grouper and snapper) food sources
Restoration

5.1 Oyster restoration experiments
5.2 Improving restoration success in the bay scallop

Monitor growth, mortality, shell breaking strength of hatchery vs wild spat
System Ecology

6.1 Apalachicola Bay food web and sediments 1994 vs. 2020 /2021

Changes in $\delta^{13}C$

Negative values – more terrestrial input in 2021 vs 1994

NSD between demersal and pelagic fish species from 2021 vs 1994
6.2 Influence of oysters on function and change in coastal systems

1. **Investigating changing benthic sediment characteristics in Apalachicola Bay**
 Sediment organic carbon has increased since 1960s

2. **Oyster Shell Dissolution Dynamics in Apalachicola Bay Region**
 Oyster shells dissolve faster in mesocosms with mangrove soil and subtidal mud

3. **Coastal carbon dynamics occurring because of mangrove replacement of regional tidal marshes**
 Mangroves are not altering soil carbon storage – yet...

4. **Vulnerability of regional wetlands to sea-level rise and changing sediment delivery from Apalachicola River**
 Regional wetland surface elevation dynamics vary by geomorphic setting
6.3 Apalachicola Bay environmental evolution and pollutant status

Assess concentrations of heavy metals and pesticides in sediment cores
Assess temporal changes in foraminifera (bio-indicators) over time

Heat maps of sediment heavy metal concentrations
Priority tasks

Integrate river and estuarine models to run climate and management scenarios

Design and deploy a new restoration experiment

Repeat spat deployment experiment with adjusted methods

Develop options for interactive tools

SAB input

Identification of data gaps

Suggestions for design of a new restoration experiment, including use of spat on shell

Options/ideas for interactive tools
QUESTIONS?

FOR ADDITIONAL INFORMATION:
ABSI website: https://marinelab.fsu.edu/absi/
ABSI email: fsuclml-absi@fsu.edu
DATA overview

ABSI
- ABSI Data on Access Database (K drive) and ArcGIS Online (cloud service)
- ABSI Intertidal Monitoring
- Spat Trap Data
- Subtidal Tonging
- Cage Study (Survival, Settlement, Heights)
- Experimental Plots (Density, Heights)
- GIS data
 - Past plantings*
 - Recent plantings – accurate
 - Presence absence of oysters
 - Sonde locations
 - Historic bathymetry
 - Points and polygons for all sites
 - And more!
- Water quality (in .csv) Jan 21 –Dec 21 and still collecting data

Partners
- FWC Monitoring Data
 - Raw data (15-20)
 - Ed Camp’s Modeling Data (87-18)
- FWC Commercial Landings (86-19)
- FDACS planting data*
- ANERR Data
 - Not stored locally
 - Download from CDMO directly (cumbersome)
 - Or use the r package called SWMPr

* Suspicions that it might be an incomplete dataset.