

## ABSI CAB Meeting July 2022 Fishery dependent and Fishery Independent Data

#### Ed Camp Fisheries and Aquatic Sciences, University of Florida



## Notes and Disclosures

- Ed Camp, Assistant professor at UF
  - PI on a FWC-UF oyster mgmt. & restoration project
  - Tasked with helping ABSI with modeling
  - Analyzing data as described in funded project
  - Data made available through FWC
  - Initial data aggregation approved by FWC
  - No uniquely identifiable harvest information shown (fishery depedent)

## Outline

- Background
  - Why data so important for models
- Data
  - Fisheries data (FWC)
  - Fisheries independent data (FDACS/FWC)
- Data we wish we had but don't
  - Reef height/amount of shell

#### Background: My Role

- Guide development of oyster models
  - Oyster populations, fisheries
  - Models should be based on data





or (i in 2:years){
 for (k in 2:(nsites+1))

#### 1. Oysters and fisheries assumptions

hr[i,1]=hr[i,2]; hr[i,nsites+2]=hr[i,nsites+1];

st[i,sites]=0; if(i>=30) st[i,sites] = stock[k]\*(1-ism)

#recruitment unpacking
ssb\_tot[i,k] = eggs[i-1,k] + eggs\_hat[i-1,k]
ssb\_tot[i,1]=ssb\_tot[i,2]; ssb\_tot[i,nsites+2]=ssb\_tot[i,nsites+1];

#dispersal larv[i,k] = sum(eggs[i-1,sites] \* prob\_mat[k,sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv\_hat[i,k] = sum(eggs\_hat[i-1,sites] \* prob\_mat[k,sites])

#first stage of density dependence N1\_hat[i,k] = (larv\_hat[i,k] (1-hert\_hat)) \* f[i,k] a1\_hat[k]/(1+b1[i,k] larv\_tot[i,k]) N1\_w[i,k] = (larv[i,k] + (hert\_hat larv\_hat[i,k])) \* f[i,k] a1[k]/(1+b1[i,k] larv\_tot[i

N2\_tot[i,k] = N1\_hat[i,k] + N1\_w[i,k] + st[i,k] R\_hat[i,k] = N1\_hat[i,k]\*a2\_hat[k]/(1+b2[i,k]\*N2\_tot[i,k]) R\_st[i,k] = st[i,k]\*a2\_st[k]/(1+b2[i,k]\*N2\_tot[i,k]) R[i,k] = N1\_w[i,k]\*a2[k]/(1+b2[i,k]\*N2\_tot[i,k])

nage[i,1,k]= R[i,k]\*So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage\_hat[i,1,k] = R\_hat[i,k]\*So.5

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsites+1] = nage\_st[i,1,k] = R\_st[i,k]\*So.5

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1]



for (i in 2:years){
 for (k in 2:(nsites+1))

# Oysters and fisheries assumptions Translate to math and statistical equations

st[i,sites]=0; if(i>=30) st[i,sites] = stock[k]\*(1-ism



larv[i,k] = sum(eggs[i-1,sites] \* prob\_mat[k,sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv\_hat[i,k] = sum(eggs\_hat[i-1,sites] \* prob\_mat[k,sites])

larv\_hat[i,1]=larv\_hat[i,2]; larv\_hat[i,nsites+2]=larv\_hat[i,nsi larv\_tot[i,k] = larv[i,k] + larv\_hat[i,k] larv tot[i,1]=larv tot[i,2]; larv tot[i,nsites+2]=larv tot[i,nsi

#Tirst stage or density dependence
N1\_hat[i,k] = (larv\_hat[i,k] (1-hert\_hat)) \* f[i,k] \*a1\_hat[k]/(1+N1\_w[i,k] = (larv[i,k] + (hert\_hat larv\_hat[i,k])) \* f[i,k] \*a1[k]

N2\_tot[i,k] = N1\_hat[i,k] + N1\_w[i,k] + st[i,k] R\_hat[i,k] = N1\_hat[i,k] \*a2\_hat[k]/(1+b2[i,k] \*N2\_tot[i,k]) R\_st[i,k] = st[i,k] \*a2\_st[k]/(1+b2[i,k] \*N2\_tot[i,k]) R[i,k] = N1\_w[i,k] \*a2[k]/(1+b2[i,k] \*N2\_tot[i,k])

nage[i,1,k]= R[i,k]\*So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsite
nage hat[i 1 k] = R hat[i k]\*So.5

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsites+1] #mirr

nage st[i,1,k] = R st[i,k]\*So.5

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1] ##



#So.5 is set to 1, so this isn't operational here (used for #mirrors

or (i in 2:years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input

ssb\_coc[i,k] = cggs[i i,k] = cggs\_noc[i i,k] ssb\_tot[i,1]=ssb\_tot[i,2]; ssb\_tot[i,nsites+2]=ssb\_tot[i,nsites+1] al wild and hat eggs i need this?

larv[i,k] = sum(eggs[i-1,sites] \* prob\_mat[k,sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv\_hat[i,k] = sum(eggs\_hat[i-1,sites] \* prob\_mat[k,sites])

larv\_hat[i,1]=larv\_hat[i,2]; larv\_hat[i,nsites+2]=larv\_hat[i,nsites+ larv\_tot[i,k] = larv[i,k] + larv\_hat[i,k] larv\_tot[i,1]=larv\_tot[i,2]; larv\_tot[i,nsites+2]=larv\_tot[i,nsites+

N1\_hat[i,k] = (larv\_hat[i,k] (1-hert\_hat)) f[i,k] a1\_hat[k]/(1-b1[ N1\_w[i,k] = (larv[i,k] + (hert\_hat larv\_hat[i,k])) f[i,k] a1[k]/(1

N2\_tot[i,k] = N1\_hat[i,k] + N1\_w[i,k] + st[i,k]
R\_hat[i,k] = N1\_hat[i,k]\*a2\_hat[k]/(1+b2[i,k]\*N2\_tot[i,k])
R\_st[i,k] = st[i,k]\*a2\_st[k]/(1+b2[i,k]\*N2\_tot[i,k])
R[i,k] = N1\_w[i,k]\*a2[k]/(1+b2[i,k]\*N2\_tot[i,k])

nage[i,1,k]= R[i,k]\*So.5 nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1] nage\_hat[i,1,k] = R\_hat[i,k]\*So.5 nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_h

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsites+1] #mir nage\_st[i,1,k] = R\_st[i,k]\*So.5 #note

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1]



#wild recruit

#So.5 is set to 1, so this isn't operational here (used for when
#mirrors

#mirros #note here is where you would have added post recruit . #mirrors

or (i in 2:years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data

tal wild and hat eggs

larv[i,k] = sum(eggs[i-1,sites] \* prob\_mat[k,sites])

larv[i,1]=larv[i,2]; larv[i,nsites+2]=larv[i,nsites+1];

larv\_hat[i,k] = sum(eggs\_hat[i-1,sites] \* prob\_mat[k,sites])

larv\_hat[i,1]=larv\_hat[i,2]; larv\_hat[i,nsites+2]=larv\_hat[i,nsites larv\_tot[i,k] = larv[i,k] + larv\_hat[i,k] larv tot[i,1]=larv tot[i,2]; larv tot[i,nsites+2]=larv tot[i,nsites

#rirst stage or density dependence N1\_hat[i,k] = (larv\_hat[i,k]\*(1-hert\_hat)) \* f[i,k]\*a1\_hat[k]/(1+b1[ N1\_w[i,k] = (larv[i,k] + (hert\_hat\*larv\_hat[i,k])) \* f[i,k]\*a1[k]/(1

N2\_tot[i,k] = N1\_hat[i,k] + N1\_w[i,k] + st[i,k]
R\_hat[i,k] = N1\_hat[i,k]\*a2\_hat[k]/(1+b2[i,k]\*N2\_tot[i,k])
R\_st[i,k] = st[i,k]\*a2\_st[k]/(1+b2[i,k]\*N2\_tot[i,k])
R[i,k] = N1\_w[i,k]\*a2[k]/(1+b2[i,k]\*N2\_tot[i,k])

nage[i,1,k]= R[i,k]\*So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage hat[i,1,k] = R hat[i,k]\*So.5

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsites+1] #mirr

nage\_st[i,1,k] = R\_st[i,k]\*So.5

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1] #



or (i in 2:years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data
- 5. Repeat 3-4

larv\_hat[i,k] = sum(eggs\_hat[i-1,sites] \* prob\_mat[k,sites])

larv\_hat[i,1]=larv\_hat[i,2]; larv\_hat[i,nsites+2]=larv\_hat[i,nsites+1]; #mirros larv\_tot[i,k] = larv[i,k] + larv\_hat[i,k] #total wil larv\_tot[i,1]=larv\_tot[i,2]; larv\_tot[i,nsites+2]=larv\_tot[i,nsites+1]; #mirros

#first stage of density dependence
N1\_hat[i,k] = (larv\_hat[i,k] (1-hert\_hat)) f[i,k] a1\_hat[k]/(1+b1[i,k] larv\_tot[i,
N1\_w[i,k] = (larv[i,k] + (hert\_hat larv\_hat[i,k])) f[i,k] a1[k]/(1+b1[i,k] larv\_tot[i,k])

N2\_tot[i,k] = N1\_hat[i,k] + N1\_w[i,k] + st[i,k] R\_hat[i,k] = N1\_hat[i,k]\*a2\_hat[k]/(1+b2[i,k]\*N2\_tot[i,k]) R\_st[i,k] = st[i,k]\*a2\_st[k]/(1+b2[i,k]\*N2\_tot[i,k]) R[i,k] = N1\_w[i,k]\*a2[k]/(1+b2[i,k]\*N2\_tot[i,k])

nage[i,1,k] = R[i,k]\*So.5
nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage\_hat[i,1,k] = R\_hat[i,k]\*So.5
nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,1]

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsites+1] #min nage\_st[i,1,k] = R\_st[i,k]\*So.5 #not

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1]



#So.5 is set to 1, so this isn't operational here (used for when #mirrors

> #mirros #note here is where you would have added post recruit #mirrors

or (i in 2:years){
 for (k in 2:(nsites+1))

- 1. Oysters and fisheries assumptions
- 2. Translate to math and statistical equations
- 3. Revise with CAB input
- 4. Fit to data
- 5. Repeat 3-4
- 6. Make predictions
  - -Environment
  - -Management -Restoration

N2\_tot[1,k] = N1\_hat[1,k] + N1\_w[i,k] + st[i,k] R\_hat[i,k] = N1\_hat[i,k] a2\_hat[k]/(1+b2[i,k] N2\_tot[i,k]) R\_st[i,k] = st[i,k] a2\_st[k]/(1+b2[i,k] N2\_tot[i,k]) R[i,k] = N1\_w[i,k] a2[k]/(1+b2[i,k] N2\_tot[i,k])

#subjecting recruits to some mortality before they become age 1's
nage[i,1,k]= R[i,k]\*So.5

nage[i,1,1] = nage[i,1,2]; nage[i,1,nsites+2] = nage[i,1,nsites+1]
nage\_hat[i,1,k] = R\_hat[i,k]\*So.5

nage\_hat[i,1,1] = nage\_hat[i,1,2]; nage\_hat[i,1,nsites+2] = nage\_hat[i,1,nsi
nage\_st[i,1,k] = R\_st[i,k]\*So.5

nage\_st[i,1,1] = nage\_st[i,1,2]; nage\_st[i,1,nsites+2] = nage\_st[i,1,nsites+1





Why are we talking about data now? Data we have are...

- 1. making some models challenging to fit
- 2. causing some simulations to seem unrealistic

As we begin to talk about what we should do (mgmt and restoration), concerned we not realize where the system is.

### Background: what models depend on

### DATA

#### 1. Fisheries data

- How much oyster was removed by fishery
- Let us see what the effect of removals were on future production (recruitment)

#### 2. Fisheries independent data

- Track oyster population rather than fishery
- Matters a lot when fishers are good at finding fish (hyperstability)
- In our case the only size-specific data

#### Data: fisheries dependent data

#### • Oyster AB Fisheries data

- Collected by FWC
- Available by year and month
- Spatially grouped by county
- NOT identifiable to the reef/bar (as far as I know)
- Going to show data by
  - Apalachicola Bay in general (Franklin, Gulf, Wakulla)
  - Plotting by month
  - Nothing identified to individual license number

#### Data: fisheries dependent data



#### Data: fisheries dependent data (2010 forward)



#### Data: fisheries dependent data

- Take home points
  - Harvest declined sharply after 2012
  - Effort did not decline as sharply, remained substantial until ~2018
  - Very high CPUE in recent years a bit odd, \*probably\* not going to affect models too much
  - The amount of effort before the collapse was higher/more than "historically" (post 1986)
  - The amount of harvest prior to collapse was not really remarkable
  - This confuses (fisheries) models—how could similar harvest be fine 1990-2010 and then cause a big decline after 2010?
    - Also leads to ideas about environmental causes (water), but these were not well supported by Fisch and Pine 2016.
    - Also consistent with idea that it was shell or habitat that was "overfished" as much as live oysters (Pine et al. 2015)

#### Data: fisheries dependent data (2010 forward)

- Anything else that you would like to see?
  - Different counties?
  - Different groupings of counties?

### Data: fisheries independent data

#### • Oyster AB monitoring data

- Originally collected by FDACS (198X-2012)
- Then (I think) collected by FDACS for FWC (2013-2015)
- Then collected by FWRI (2016-current)
  - Melanie Parker and Matt Davis
- By reef or region of reef \*names are tricky over time\*
- More or less done seasonally (winter/summer)

#### • Going to show data by

- All, then some specific reefs
- Plotting by year, showing fall/winter sampling
- Showing mean and uncertainty

#### Data: fisheries independent data: all bars







Source: FWRI

#### Data: fisheries independent data: Cat Point







#### Data: fisheries independent data: Easthole







Source: FWRI

#### Data: fisheries independent data: Dry Bar



Year

Source: FWRI

#### Data: fisheries independent data: Green Point



#### Data: fisheries independent data: Porters



Source: FWRI

#### Data: fisheries independent data

- Anything else that you would like to see?
  - Different bars? Possibly (if I can code it) different combinations of bars?

#### Data: fisheries dependent data

- Take home points
  - There is not many oysters in AB right now.
  - This is the longest, lowest density of oysters we have record of
  - There is no sign of sublegal or legal improvement
  - Very slight increase <u>over last few years</u> in spat/recruits (<25mm), but still well below average

#### Data: fisheries dependent data

- What this means for models
  - No evidence of sustainable oyster populations with <u>no</u> fishery
  - How do we model (simulate) sustainable management actions on effectively no oysters/current unsustainable population?
    - Assume average recruitment happens...soon?
    - Make a lot of assumptions about "shell budget"/habitat suitable for recruitment (allows the model to "make sense" of why there aren't oysters now but might be more later, like after more restoration)
    - May be able to estimate shell parameters with re-done stock assessment
- No easy answers here and the clock is ticking

#### Data we wish we had but don't

- Long term shell or reef height data
  - Does not exist, I just wish it did
- Some experimental evidence that oysters will survive
  - If reefs are heigh enough
  - If substrate is different
  - If anything that we can reasonably restore to

## **Questions and concerns**

## edvcamp@ufl.edu