THE APALACHICOLA BAY SYSTEM INITIATIVE (ABSI)

PROJECT OVERVIEW Sandra Brooke

Science Advisory Board Meeting December 14, 2022

WHAT IS ABSI?

Funded by Triumph Gulf Coast Inc. in April 2019, ABSI overarching goals are:

- Understand why the Apalachicola Bay oyster populations have not recovered and identify restoration approaches that will inform larger efforts
- Determine whether loss of oyster populations is causing a decline in overall ecosystem health?
- Work with local stakeholders to help develop a science-based restoration and management plan for Apalachicola Bay

ABSI PERSONNEL

Faculty

Sandra Brooke, Full Research Faculty (PI) Joel Trexler, FSUCML Director, Faculty (Co-PI) Tara Stewart Merrill, Asst. Research Faculty Josh Breithaupt, Asst Research Faculty Andy Shantz, Asst Research Faculty

Students Ph.D ~ 8 MSc~ 5 Undergrads ~ 2~4

Post-docs Betsy Mansfield Fabio Caltabellotta

Technicians

- Research Technicians ~ 6
- Hatchery Technicians ~ 5 Interns ~ 4~6

Grants Compliance

Data management

Outreach team

Table of Contents									
Executive summary	1								
1. Introduction									
2. Habitat and environment									
2.1 Subtidal mapping	6								
2.2 Fresh-water flow dynamics	8								
2.3 Bio-physical model of the Apalachicola Bay System									
2.4 Predictive habitat suitability modeling	12								
3. Oyster biology									
3.1 Genetic structure									
3.2 Disease and other stressors									
3.2.1 Identifying the impacts of disease on oysters									
3.2.2 Understanding disease thresholds in the Apalachicola Bay	20								
3.3.3 Exploring consequences of disease for Apalachicola Bay	20								
3.3 Stress responses and physiological tolerances	21								
3.4 Effect of salinity on juvenile oysters	23								
3.5 Stress responses of oyster early life-stages	24								
4. Oyster ecology	24								
4.1 Intertidal monitoring	24								
4.2 Spatial and temporal patterns of intertidal oyster reefs	30								
4.3 Subtidal monitoring	32								
4.4 Intertidal and subtidal recruitment	35								
4.5 Impacts of oyster populations on community development	37								
5. Restoration	38								
5.1 Oyster restoration experiments	38								
5.2. Improving restoration success in the bay scallop	40								
6. System ecology	43								
6.1 Apalachicola Bay food web and sediments: 1994 vs. 2020	43								
6.2 Influence of oysters on function and change in coastal ecosystems	48								
6.2.1 Investigating changing benthic sediment characteristics	49								
6.2.2 Oyster Shell Dissolution Dynamics	50								
6.2.3 Coastal carbon dynamics occurring because of mangrove	51								
6.2.4 Vulnerability of regional wetlands to sea-level rise	53								
6.3 Apalachicola Bay environmental evolution and pollutant status	54								
7. Research hatchery	58								
7.1 Hatchery accomplishments in 2021	58								
7.2 Hatchery goals for 2022	60								
8. Outreach and Education	62								
8.1 Targeted outreach to the community	62								
8.1.1 Community Advisory Board	62								
8.1.2 Outreach and Education Subcommittee	63								
8.1.3 Successor Group Subcommittee	65								
8.1.4 Oystermen's workshops	65								
8.1.5 Public outreach (in-person and virtual)	67								
8.2 ABSI website/online education									
8.3 Local news coverage	70								
8.4 Shell recycling program									
9. Literature cited	71								

ABSI Annual Report March 2022

Development of a public-facing interactive tool

Habitat suitability

Habitat suitability models

Environmental project

Adam Alfasso*, Sandra Brooke

- Which areas are currently most likely to support oyster recruitment, growth and survival?
 - How will these areas change under future climate scenarios?
- What substrate types are most conducive to oyster population development?
- How do seasonal environmental regimes affect habitat suitability patterns?
- How do seasonal variations in larval dispersal impact habitat suitability patterns?
 - Is population connectivity an important variable for habitat suitability?
- Which areas within Apalachicola would be optimal for sanctuary (protected) reefs?

Working toward an analytical model

OysterID	SampleEven	ShellHeight	ShellLength	ShellWidth	TotalWeight	ShellWetWe	DermoMantl	DermoGill	Sex	ReproStage		Y	1 . /
ABCD1601-0	ABCOLL_201	. 85.9	81.8	25.5	109.81	79.34	2	2	Z	4	Beatriz	Meiía-M	lercado
ABCD1601-0	ABCOLL_201	. 102.8	71.7	28.4	107.9	77.23	1	1	Z		Buceph	AB-S-2	
ABCD1601-0	ABCOLL_201	. 90.8	64.2	45.5	169.41	131.02	2	2	Z	4	No	AB-S-3	
ABCD1601-0	ABCOLL_201	51.4	51.3	27.4	34.56	27.84	0	0	M	2	No	AB-S-4	
ABCD1601-0	ABCOLL_201	Deve	elopir	ng da	ta ma	anage	ement	: pian	Z	4	Yes	AB-S-5	
ABCD1601-0	ABCOLL_201	. 60.9	46.5	28.6	36.74	26.02	0.5	0.5	M	2	No	AB-S-6	
ABCD1601-0	ABCOLL_201	. 85.9	54.3	38.1	162.55	129.91	2	1	F	1	No	AB-S-7	
ABCD1601-0	ABCOLL_201	87.8	53.3	30.7	105.21	80.4	3	4	Z		Buceph	AB-S-8	
ABCD1601-0	ABCOLL_201	Imp	emer	itina44	data	UA	0.5	0.5	Z	4	Yes	AB-S-9	
ABCD1601-1	ABCOLL_201	. 85	73.4	34.5	151.25	128.23	0	0.5	F	1	. No	AB-S-10	
ABCD1601-1	ABCOLL_201	. 49.9	40.3	23.8	25.75	20.95	0	0	Z	4	No	AB-S-11	
ABCD1601-1	ABCOLL_201	. 60.3	46.8	28.4	33.88	24.08	0	0	M	2	No	AB-S-12	
ABCD1601-1	ABCOLL_201	Mer	aina®	lata ²	strean	ns inte	o use	r-frier	ndlv r	naste	No	AB-S-13	
ABCD1601-1	ABCOLL_201	. 41.7	3 3 3 3 3 3 3 3 3 3	15.6	13.38	9.67			Z		No	AB-S-14	
ABCD1601-1	ABCOLL_201	data	hasel	S 15.3	7.76	5.9	0	0	M	3	No	AB-S-15	
ABCD1601-1	ABCOLL_201	72.8	64.5	33.8	95.54	77.53	0	0	Z	4	Yes	AB-S-16	
ABCD1601-1	ABCOLL_201	. 27.5	32.6	12.4	4.76	3.68	0	0	F	3	No	AB-S-17	
ABCD1601-1	ABCOLL_201	. 74.5	63.7	29.6	78.75	63.67	0	0	F		Buceph	AB-S-18	
ABCD1601-1	ABCOLL_201	Mad	tor da	taha	co(c).04	rovic	10 the	mo	te te	build	No	AB-S-19	
ABCD1601-2	ABCOLL_201	11143.4			5C(3/.9			- meç		Dung	Yes	AB-S-20	
ABCD1601-2	ABCOLL_201	62.4	+i+~54.6	24.1		-1^{41}	bact b	vnoth			Buceph	AB-S-21	
ABCD1601-2	ABCOLL_201	qual			DUEIZ	an <u>9</u> 34	lest Id	ypou	leses	1	. No	AB-S-22	
ABCD1601-2	ABCOLL_201	. 34.5	35.5	13	10.38	8.39	0	0	Z	4	No	AB-S-23	
ABCD1601-2	ABCOLL_201	. 69	53.7	36.6	114.14	94.43	2	2	F	1	. Yes	AB-S-24	
ABCD1601-2	ABCOLL_201	. 33.7	30.3	20.4	9.77	8.23	0.5	0	Z	4	No	AB-S-25	
ABCD1602-0	ABCOLL_201	. 61.3	46.6	20.7	43.43	34.95	0	0.5	F	1	. No	AB-S-26	
ABCD1602-0	ABCOLL_201	. 53.6	47.2	19.7	31.25	25.04	0	0	F	1	. No	AB-S-27	
ABCD1602-0	ABCOLL_201	. 71.5	49	28.8	49.25	34.18	0	0	F	1	. No	AB-S-28	
ABCD1602-0	ABCOLL_201	. 50	42.4	21.2	28.06	23.11	0	0	Μ	1	. No	AB-S-29	
ABCD1602-0	ABCOLL_201	. 58.6	46.5	25.3	38.18	28.43	0	0	Μ	1	. No	AB-S-30	