ABSI Modeling

Hydrographic Modeling Update

Dr. Steve Morey Florida A&M University

Dr. Xu Chen Florida State University

ABSI Hydrodynamic Model Configuration

- Finite Volume Coastal Ocean Model (FVCOM)
- Mesh Resolution: 800m 30m (water and land)
- Vertical Grid: 10 layers
- Surface Forcing: CFSR (atmospheric model) and Wind Observations
- River Discharge: USGS or Leitman's Model
- River Temperature: NOAA NOS station
- Initial Condition (U, V, T, S): HYCOM Reanalysis
- Boundary Condition (Tide, T, S): HYCOM Reanalysis
- Model Periods run to date: 1998, 2011-2012, 2019

Maps of salinity quantiles (median, 25th percentile, 75th percentile) corresponding to wet, normal, and dry March.

0.00 3.61 7.22 10.83 14.44 18.05 21.66 25.27 28.88 32.49

Model vs. Observation (Salinity 2019)

Apalachicola River Diversion through the Intracoastal Waterway

Flow directions from Nat'l Hydrography Dataset V2

Locations of Monitoring Stations

Model vs. Observation (Salinity 2012)

Oyster Larvae Model

Individual-Based Larval Model (FVCOM I-State Configuration Model – FISCM)

- Larvae simulated as Lagrangian particles, each representing a group of larvae that travel together
- Larvae released from submerged and intertidal reef locations every 6 hours
- Larvae advected passively in 3-dimensional velocity field for 20 days.
- Larval mortality: The fraction of living larvae represented by each group is calculated during advection based on a mortality rate ranging from 0 in a suitable environment to 0.95/7 days (95% die in one week) for unsuitable environment

 Mortality rate (fraction mortality / 7 days)

A larval group is considered "dead" of P<.05.

• Larval settlement: Larval particles that pass over reef locations during the last 5 days of their simulation time are considered as successfully settled.

Oyster Larvae Release Locations

Oyster Larvae Release Locations

- 10504 locations
- Released every 6 hours

Larvae settlement

Shift in larval settlement patterns to the west during fall season

Comparison of 2019 (normal flow) To 2012 (low flow)

 2012 was a low recruitment year but the model is showing elevated recruitment.

Summary

- A coupled modeling system was developed to simulate
 - Apalachicola Bay circulation and hydrography
 - Response of Apalachicola Bay to altered river flow scenarios
 - Oyster larvae transport, settlement, and survival likelihood
- Results of model experiments highlight that additional factors contribute to high salinity conditions during low flow conditions of the Apalachicola River
- Increased larval recruitment during spring season compared to fall season
- Results point to hot spots for larval supply and larval settlement.
- The modeling system will benefit from additional biological information.
- Model results are being used collaboratively by partners, e.g., Habitat Suitability Models